Exercice 1

Le but de cet exercice est d'étudier les suites de termes positifs dont le premier terme u_0 est strictement supérieur à 1 et possédant la propriété suivante :

pour tout entier naturel n > 0, la somme des n premiers termes consécutifs est égale au produit des n premiers termes consécutifs.

On admet qu'une telle suite existe et on la note (u_n) . Elle vérifie donc trois propriétés :

- $u_0 > 1$,
- pour tout $n \ge 0$, $u_n \ge 0$,
- pour tout n > 0, $u_0 + u_1 + \dots + u_{n-1} = u_0 \times u_1 \times \dots \times u_{n-1}$.
- 1. On choisit $u_0 = 3$. Déterminer u_1 et u_2 .

Prenons quelques minutes pour bien comprendre le fonctionnement de cette suite. Lisons l'énoncé et relisons le... Voila. On a donc

• Calcul de u_1 :

 u_1 est tel que $u_0 + u_1 = u_0 \times u_1$ et donc $3 + u_1 = 3 \times u_1$, finalement :

$$2u_1 = 3$$
 et donc $u_1 = \frac{3}{2}$ et on remarque que $u_0 + u_1 = u_0 \times u_1 = 3 + \frac{3}{2} = 3 \times \frac{3}{2} = \frac{9}{2}$

• Calcul de u_2 :

 u_2 est tel que $u_0 + u_1 + u_2 = u_0 \times u_1 \times u_2$ et donc $\frac{9}{2} + u_2 = \frac{9}{2} \times u_2$, finalement :

 $\frac{7}{2}u_2 = \frac{9}{2}$ et donc $u_2 = \frac{9}{7}$ et un rapide calcul nous permet de vérifier que :

$$u_0 + u_1 + u_2 = u_0 \times u_1 \times u_2 = 3 + \frac{3}{2} + \frac{9}{7} = 3 \times \frac{3}{2} \times \frac{9}{7} = \frac{81}{7}$$

2. Pour tout entier n > 0, on note $s_n = u_0 + u_1 + \cdots + u_{n-1} = u_0 \times u_1 \times \cdots \times u_{n-1}$.

On a en particulier $s_1 = u_0$.

(a) Vérifier que pour tout entier n > 0, $s_{n+1} = s_n + u_n$ et $s_n > 1$.

____ Correction

Soit $n \in \mathbb{N}^*$

- De plus comme $u_n>0$, on en déduit que $s_{n+1}-s_n>0$, la suite s_n est strictement croissante, et comme $s_1=u_0>1$ on en déduit que $s_n>1$ finalement :

Pour tout entier n > 0, $s_{n+1} = s_n + u_n$ et $s_n > 1$

(b) En déduire que pour tout entier n > 0,

$$u_n = \frac{s_n}{s_n - 1}.$$

--- Correction -

Soit $n \in \mathbb{N}^*$

On a $s_{n+1} = u_0 + u_1 + \dots + u_{n-1} + u_n = u_0 \times u_1 \times \dots \times u_{n-1} \times u_n = s_n \times u_n$

De plus on a, c.f. la question précédente :

 $s_{n+1} = s_n + u_n$ ainsi $s_n + u_n = s_n \times u_n$ ce qui s'écrit $u_n(1-s_n) = -s_n$

Finalement:

$$u_n = \frac{s_n}{s_n - 1}.$$

(c) Montrer que pour tout $n \ge 0$, $u_n > 1$.

Correction

Soit n > 0:

On vient de montrer que $u_n = \frac{s_n}{s_n - 1}$ or $s_n > 1$, c.f. 2.a., donc $s_n > s_n - 1 > 0$ et ainsi : Pour tout $n \ge 0$, $u_n > 1$.

- 3. À l'aide de l'algorithme ci-contre, on veut calculer le terme u_n pour une valeur de n donnée.
 - (a) Recopier et compléter la partie traitement de l'algorithme ci-contre.

 \blacksquare Correction \blacksquare Voir ci-contre

(b) Le tableau ci-dessous donne des valeurs arrondies au millième de u_n pour différentes valeurs de l'entier n:

n	l .	5	10	20	30	40
u_n	3	1,140	1,079	1,043	1,030	1,023

Quelle conjecture peut-on faire sur la convergence de la suite (u_n) ?

—— Correction La suite semble converger et sa limite être 1. Correction -

Saisir nEntrée :

s prend la valeur uTraitement:

Saisir u

Pour i allant de 1 à n:

 \boldsymbol{u} prend la valeur

s prend la valeur s + u

Fin Pour Afficher u Sortie:

4. (a) Justifier que pour tout entier n > 0, $s_n > n$.

_ Correction

On sait que $u_n > 1$ pour tout $n \in \mathbb{N}$, c.f. la question 2.c. et le fait que $u_0 > 1$, on en déduit que : Comme $s_n = u_0 + u_1 + \cdots + u_{n-1}$ s_n est une somme de n termes chacun plus grand que 1, donc cette somme est plus grande que n, d'où le résultat.

(b) En déduire la limite de la suite (s_n) puis celle de la suite (u_n) .

— Correction

On en déduit par le théorème de comparaison que la limite de s_n est $+\infty$ et donc que la limite de $\frac{1}{s_n}$ est égale à 0. Et comme $u_n = \frac{s_n}{s_n - 1}$ pour tout $n \in \mathbb{N}^*$ on en déduit que : $u_n = \frac{s_n}{s_n - 1} = \frac{s_n}{s_n \left(1 - \frac{1}{s_n}\right)} = \frac{s_n}{s_n \left(1 - \frac{1}{s_n}\right)} = \frac{1}{1 - \frac{1}{s_n}}.$

$$u_n = \frac{s_n}{s_n - 1} = \frac{s_n}{s_n \left(1 - \frac{1}{s_n}\right)} = \frac{s_n}{s_n \left(1 - \frac{1}{s_n}\right)} = \frac{1}{1 - \frac{1}{s_n}}.$$

Finalement:

$$\lim_{n\to+\infty}u_n=1$$