1

Définition et représentation graphique

La fonction $\exp(x)$ est continue et strictement croissante sur $]-\infty;+\infty[$ et à valeur dans $]0;+\infty[$. Le théorème de la valeur intermédiaire nous assure donc que pour $\forall \beta \in]0;+\infty[$, l'équation :

$$e^x = \beta$$

admet une unique solution $\alpha \in]-\infty;+\infty[$.

Cette solution se notera $ln(\beta)$

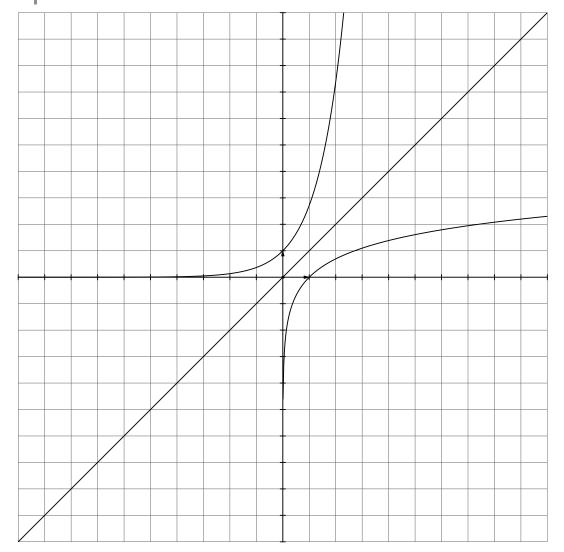
Définition

La fonction logarithme népérien, notée ln, est la fonction définie sur $]0;+\infty[$ qui à tout réel x strictement positif, associe le réel y tel que $e^y=x$

On notera $y = \ln(x)$ équivaut à $x = e^y$

Remarque

La courbe représentative du logarithme népérien est le symétrique de celle de la fonction exponentielle par rapport à la droite déquation y=x



Théorème

Propriété fondamentale

Pour tous réels a et b strictement positifs :

$$\ln(a \times b) = \ln(a) + \ln(b)$$

Démonstration

Par définition, on a :

a)
$$a = e^{\ln(a)}$$

b)
$$b = e^{\ln(b)}$$

c)
$$a \times b = e^{\ln(a \times b)}$$

On peut constater que : $a\times b=e^{\ln(a)}\times e^{\ln(b)}$

d'après les propriétés de la fonction exponentielle $a \times b = e^{\ln(a) + \ln(b)}$

Donc $e^{\ln(a \times b)} = e^{\ln(a) + \ln(b)}$

Comme exp est strictement croissante, on a $\ln(a \times b) = \ln(a) + \ln(b)$

Propriété

Autres propriétés

- $\forall a > 0$ on a $\ln\left(\frac{1}{a}\right) = -\ln\left(a\right)$
- $\forall a > 0 , \forall b > 0 \text{ on a } \ln\left(\frac{a}{b}\right) = \ln\left(a\right) \ln\left(b\right)$
- $\forall a > 0$ on a $\ln(a^n) = n \ln(a)$
- $\forall a > 0$ on a $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$

3

Dérivée et variation de In

ln est fonction continue et dérivable sur $]0;+\infty[$ et on a :

$$(\ln(x))' = \frac{1}{x}$$

x	C) $1 + \infty$
$\frac{1}{x}$		+
ln		