1

Définition de la dérivée d'une fonction

Définitions Soit f une fonction définie sur un intervalle I.

- On dit que f est **dérivable** sur I lorsque f admet un nombre dérivé pour tout réel x de I, noté f'(x).
- On appelle fonction dérivée de f sur I, notée f', la fonction définie sur I par $f': x \mapsto f'(x)$.

Exercice résolu 1 Étudier la dérivabilité d'une fonction.

Soit a un nombre réel quelconque. À l'aide du taux de variation, montrer que la fonction $f: x \mapsto x^2$ est dérivable en a puis retrouver l'expression de la dérivée de la fonction carré.

▼ Solution

Pour étudier la dérivabilité de f en a, il faut tout d'abord s'intéresser au taux de variation de f en a:

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{2ah + h^2}{h} = 2a + h$$

Lorsque h devient très proche de zéro, cette quantité se rapproche de 2a qui est un nombre fini. La fonction est donc dérivable en a et on a f'(a) = 2a.

2 Fonction dérivée des fonctions de référence

Fonction	Domaine de définition	Domaine de dérivabilité	Fonction dérivée
Fonction constante : $f(x) = k$	R	R	f'(x) = 0
Fonction affine: $f(x) = mx + p$	R	R	f'(x) = m
Fonction carrée : $f(x) = x^2$	R	R	f'(x) = 2x
Fonction puissance : $f(x) = x^n$, n entier naturel non nul	R	R	$f'(x) = n x^{n-1}$
Fonction inverse : $f(x) = \frac{1}{x}$]-∞;0[U]0;+∞[]- \infty; 0[U]0; + \infty[$f'(x) = -\frac{1}{x^2}$
Fonction racine carrée : $f(x) = \sqrt{x}$	$[0;+\infty[$]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$
Fonction valeur absolue : $f(x) = x $	R	$]-\infty$; 0[U]0; $+\infty$ [$f'(x) = \begin{cases} -1 \sin x < 0 \\ 1 \sin x > 0 \end{cases}$

Exercice résolu 2 Déterminer la fonction dérivée.

Déterminer la fonction dérivée des fonctions suivantes, sans se soucier du domaine de dérivabilité.

1
$$f(x) = 3x + 5$$

$$f(x) = \sqrt{x}$$

4
$$f(x) = \sqrt{2}$$

5
$$f(x) = 3 - 2x$$

▼ Solution

- 1 f est une fonction affine mx + p avec m = 3, donc f'(x) = 3.
- 2 f est la fonction racine carrée donc $f'(x) = \frac{1}{2\sqrt{x}}$.
- 3 f est une fonction puissance x^n avec n = 7, donc $f'(x) = 7x^6$.

- f est une fonction constante donc f'(x) = 0.
- 5 f est une fonction affine mx + p avec m = -2, donc f'(x) = -2.

Opérations sur les fonctions dérivables

Théorème Soit u et v deux fonctions dérivables sur un intervalle I.

- **1.** La fonction u + v est dérivable sur I et (u + v)' = u' + v'.
- **2.** Soit k un réel. La fonction k u est dérivable sur I et (ku)' = ku'.
- **3.** La fonction uv est dérivable sur I et (uv)' = u'v + uv'.
- **4.** Si la fonction u ne s'annule pas sur I alors la fonction $\frac{1}{u}$ est dérivable sur I et $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$.
- **5.** Si la fonction v ne s'annule pas sur I, alors la fonction $\frac{u}{v}$ est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$.

Théorème (admis) Soit g une fonction dérivable sur un intervalle I.

Pour tout x réel tel que mx + p appartient à I, la fonction f définie par f(x) = g(mx + p) est dérivable et $f'(x) = m \times g'(mx + p)$.

EXEMPLE On considère la fonction f définie sur \mathbb{R} par $f(x) = (5x + 6)^4$.

f est de la forme $f: x \mapsto g(mx + p)$ avec $g(x) = x^4$, m = 5 et p = 6. g est dérivable sur \mathbb{R} et, pour tout x de \mathbb{R} , on a $g(x) = 4x^3$. On en déduit que f est dérivable sur \mathbb{R} et, pour tout x de \mathbb{R} , on a : $f'(x) = m \times g'(mx + p) = 5 \times 4 \times (5x + 6)^3 = 20(5x + 6)^3$.

Exercice résolu 3 Déterminer la dérivabilité d'une fonction.

Pour chacune des fonctions suivantes, déterminer le ou les intervalle(s) sur le(s)quel(s) elle est dérivable et déterminer sa fonction dérivée.

$$1 f: x \mapsto 7x^2 - 5x$$

$$2 g: x \mapsto \frac{3}{x}$$

1
$$f: x \mapsto 7x^2 - 5x$$
 2 $g: x \mapsto \frac{3}{x}$ **3** $h: x \mapsto \frac{3x+1}{2x^2+5}$ **4** $f: x \mapsto \sqrt{x}(6x^3-2)$

▼ Solution

- 1 f est la somme de deux fonctions $u: x \mapsto 7x^2$ dérivable sur \mathbb{R} et $v: x \mapsto -5x$ dérivable sur \mathbb{R} . On en déduit que f est dérivable sur \mathbb{R} et f' = u' + v'. $u'(x) = 7 \times 2x = 14x$ et v'(x) = -5, donc f'(x) = 14x - 5.
- 2 g est de la forme k u, avec k = 3 et $u : x \mapsto \frac{1}{x}$ dérivable sur $]-\infty$; 0[et sur]0; $+\infty[$.

On en déduit que g est dérivable sur \mathbb{R}^* et $g'(x) = k u'(x) = 3 \times \left(-\frac{1}{x^2}\right) = -\frac{3}{x^2}$.

3 h est le quotient de deux fonctions $u: x \mapsto 3x + 1$ et $v: x \mapsto 2x^2 + 5$ dérivables sur \mathbb{R} , et, pour tout réel x, v(x) > 0, donc v ne s'annule pas. La fonction h est dérivable sur \mathbb{R} et $h' = \frac{u'v - uv'}{2}$.

On en déduit :
$$h'(x) = \frac{3 \times (2x^2 + 5) - (3x + 1) \times 4x}{(2x^2 + 5)^2} = \frac{6x^2 + 15 - 12x^2 - 4x}{(2x^2 + 5)^2} = \frac{-6x^2 - 4x + 15}{(2x^2 + 5)^2}$$
.

4 m est le produit de deux fonctions $u: x \mapsto \sqrt{x}$ dérivable sur $]0; +\infty[$ et $v: x \mapsto 6x^3-2$ dérivable sur \mathbb{R} . On en déduit que m est dérivable sur]0; $+\infty[$ et m'=u'v+uv'.

$$u'(x) = \frac{1}{2\sqrt{x}}$$
 et $v'(x) = 18x^2$, donc

$$m'(x) = \frac{1}{2\sqrt{x}} \times (6x^3 - 2) + \sqrt{x} \times 18x^2 = \frac{3x^3 - 1}{\sqrt{x}} + \frac{x \times 18x^2}{\sqrt{x}} = \frac{21x^3 - 1}{\sqrt{x}}$$

Soit f la fonction définie sur $[0; +\infty[$ par :

$$f(x) = 3x^2 + \sqrt{x+1}.$$

- **1.** Écrire f sous la forme d'une somme de deux fonctions u et v dont on précisera l'expression.
- **2.** En déduire la fonction dérivée de f.
- Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (-3x + 7)(5x + 1).$$

- 1. écrire f sous la forme d'un produit de deux fonctions u et v dont on précisera l'expression.
- **2.** En déduire la fonction dérivée de f.
- **3.** Donner la forme développée de f puis retrouver le résultat précédent.
- Soit f la fonction définie par :

$$f(x) = \frac{-3x - 7}{x^2}$$
 pour tout x non nul.

1. Quelles sont les fonctions *u* et *v* telles que

$$f = \frac{u}{v}$$
 ?

- **2.** En déduire la fonction dérivée de f.
- 3. Justifier que $f(x) = -\frac{3}{x} \frac{7}{x^2}$ puis retrouver le résultat précédent.
- ${\color{red} 4}$ Soit f la fonction définie sur ${\mathbb R}$ par :

$$f(x) = x^2 - 3x + 7.$$

1. À l'aide du taux de variation, montrer que f est

- dérivable en a = -2 et donner f'(-2).
- **2.** Déterminer le domaine de dérivabilité de *f* ainsi que l'expression de f'.
- Soit f la fonction définie par $f(x) = \frac{-8}{x}$ pour tout réel x non nul.
 - 1. À l'aide du taux de variation, montrer que f est dérivable en a = -5 et donner f'(-5).
 - **2.** Déterminer le domaine de dérivabilité de *f* ainsi que l'expression de f'.
- Donner la fonction dérivée des fonctions suivantes en précisant le domaine de définition et de dérivabilité.

$$f(x) = -x^2$$

•
$$g(x) = -\frac{\pi}{x}$$

$$\bullet \ h(x) = 18\sqrt{x}$$

•
$$f(x) = -x^2$$

• $h(x) = 18\sqrt{x}$
• $g(x) = -\frac{\pi}{x}$
• $j(x) = -x + 8 + \sqrt{x}$

•
$$k(x) = \frac{3}{x} + 3x^2 + 7$$
 • $m(x) = -3\sqrt{2x + 5}$

$$\bullet \ m(x) = -3\sqrt{2x+5}$$

Donner la fonction dérivée des fonctions suivantes en précisant le domaine de définition et de dérivabilité.

•
$$n(x) = \sqrt{3}x^2 - \pi x + \frac{1}{3}$$

•
$$p(x) = (2x^2 - x + 1)(-7x + 8)$$

• $r(x) = \frac{3x - 7}{x}$
• $s(x) = \frac{x + 5}{2x - 1}$

$$r(x) = \frac{3x - 7}{x}$$

•
$$t(x) = \frac{x^2 + 3x - 7}{x + 5}$$
 • $w(x) = \frac{5\sqrt{x}}{7 - 3x}$

•
$$w(x) = \frac{5\sqrt{x}}{7-3x}$$

Comprendre une démonstration

On présente la démonstration de la propriété suivante. La lire attentivement puis répondre aux questions.

Soient u et v deux fonctions dérivables sur un intervalle I de \mathbb{R} . La fonction uv est dérivable sur I et (uv)' = u'v + uv'.

Démonstration

On considère la fonction $f = u \times v$. Soit x_0 un nombre appartenant à l'intervalle I.

Le taux de variation de f en x_0 s'écrit $T(h) = \frac{f(x_0 + h) - f(x_0)}{h}$

On remplace l'expression de f en fonction de u et v: $T(h) = \frac{u(x_0 + h) \times v(x_0 + h) - u(x_0) \times v(x_0)}{f}$.

Soit
$$T(h) = \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h) + u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$
 (1)

$$T(h) = v(x_0 + h) \frac{u(x_0 + h) - u(x_0)}{h} + u(x_0) \frac{v(x_0 + h) - v(x_0)}{h}$$
(2)

Lorsque h tend vers 0, on a : • $\frac{u(x_0+h)-u(x_0)}{h}$ tend vers $u'(x_0)$; • $\frac{v(x_0+h)-v(x_0)}{h}$ tend vers $v'(x_0)$; • on admet que $v(x_0+h)$ tend vers $v(x_0)$.

Donc T(h) tend vers $v(x_0) \times u'(x_0) + u(x_0) \times v'(x_0)$. (3)

On peut donc dire que f est dérivable en x_0 et que l'on a :

$$f'(x_0) = v(x_0) \times u'(x_0) + u(x_0) \times v'(x_0). \tag{4}$$

On obtient
$$f' = u'v + uv'$$
. (5)

- 1 Justifier l'introduction de l'expression en rouge ligne (1).
- 2 Expliquer la réorganisation du calcul de la ligne (2).
- (3) Justifier la ligne (3).
- 4 Justifier le passage de l'écriture du nombre dérivé en x_0 en ligne (4) a l'égalité entre fonctions de la ligne (5).

Rédiger une démonstration

On souhaite démontrer la propriété suivante.

Soient u et v deux fonctions dérivables sur un intervalle I de \mathbb{R} .

Si la fonction u ne s'annule pas sur I alors la fonction $\frac{1}{u}$ est dérivable sur I et $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$.

En utilisant les indications suivantes, démontrer cette propriété.

- Poser $f = \frac{1}{u}$ et considérer x_0 , un élément de I.
- Écrire le taux de variation de la fonction u en x_0 .
- Écrire le taux de variation de la fonction f en x_0 .
- Vérifier que ce taux de variation peut s'écrire : $\frac{1}{u(x_0 + h)u(x_0)} \times \frac{u(x_0 + h) u(x_0)}{h}$
- En déduire la limite de ce taux de variation lorsque h tend vers 0 et retrouver ainsi le résultat de cours. On admettra que $u(x_0 + h)$ tend vers $u(x_0)$ lorsque h tend vers 0.

Correction des exercices

1
$$f'(x) = 6x + \frac{1}{2\sqrt{x+1}}$$

(2)
$$f'(x) = -30x + 32$$

4
$$T(h) = \frac{f(a+h) - f(a)}{h} = 2a - 3$$

 $f'(x) = 2x - 3$

(5)
$$T(h) = \frac{f(a+h) - f(a)}{h} = \frac{8}{a(a+h)}$$

 $f'(x) = \frac{8}{x^2}$

6 •
$$f'(x) = -2x$$
 • $g'(x) = \frac{\pi}{x^2}$
• $h'(x) = \frac{9}{\sqrt{x}}$ • $j'(x) = -1 + \frac{1}{2\sqrt{x}}$
• $k'(x) = -\frac{3}{x^2} + 6x$ • $m'(x) = -\frac{3}{\sqrt{2x+5}}$