Exercices types _____

Exercice 1 Exercices type _____

On considère la fonction f définie sur [-10; 3] par :

$$f(x) = -5x^3 - 16x$$

Démontrer que l'équation f(x) = 3568, admet une unique solution sur l'intervalle [-10; 3], notée α . Déterminer un encadrement de α à 10^{-1} près.

Exercice 2

On considère la fonction f dont on donne le tableau de variations ci-dessous.

x	-20	_7 _7	4	9	15	20
f(x)	15	5	14	3	6	-1

1. Quel est le nombre de solutions de l'équation f(x) = 7?

Exercice type bac _____

Exercice 3 Type bac _____

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^{3x} - (6x+1)e^x$$

Le but de cet exercice est d'étudier la fonction f sur \mathbb{R} .

On définit la fonction g sur \mathbb{R} par : $g(x) = 3e^{2x} - 6x - 7$

- 1. (a) Déterminer la limite de la fonction g en $-\infty$.
 - (b) Déterminer la limite de la fonction g en $+\infty$.
- 2. (a) On admet que la fonction g est dérivable sur \mathbb{R} , et on note g' sa fonction dérivée. Démontrer que pour tout nombre réel x, on a $g'(x) = 6e^{2x} 6$.
 - (b) Étudier le signe de la fonction dérivée g' sur \mathbb{R} .
 - (c) En déduire le tableau de variations de la fonction g sur \mathbb{R} . Vérifier que la fonction g admet un minimum égal à -4.

3.

- 4. Montrer que l'équation g(x) = 0 admet deux solutions, non nulles, notée α et β , dont on donnera des encadrements d'amplitude 10^{-1}
- 5. Déduire des questions précédentes le signe de la fonction g sur \mathbb{R} .

• • Partie B - Étude de la fonction f

- 1. La fonction f est dérivable sur \mathbb{R} , et on note f' sa fonction dérivée. Démontrer que pour tout nombre réel x, on a $f'(x) = e^x g(x)$, où g est la fonction définie dans la partie A.
- 2. En déduire alors le signe de la fonction dérivée f' puis les variations de la fonction f sur \mathbb{R} .
- 3. Pourquoi la fonction f n'est-elle pas convexe sur \mathbb{R} ? Expliquer.