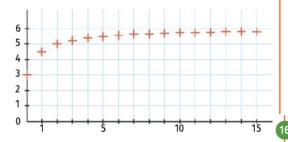
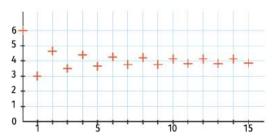
Définition

🌃 Conjecturer un majorant de la suite définie sur N représentée ci-dessous.



20 Conjecturer la limite de la suite définie sur N représentée ci-dessous.



 $oxed{21}$ Soit (w_n) la suite définie, pour tout entier naturel n non nul, par $w_n = 2 + \frac{1}{\sqrt{n}}$

1. a. Déterminer le plus petit entier n_0 tel que, pour tout $n \geqslant n_{_{0}}$, on a $w_{_{n}} \in$]1,99 ; 2,01[.

b. Déterminer le plus petit entier n_1 tel que, pour tout $n \ge n_1$, on a $|w_n - 2| \le 10^{-4}$.

c. Soit ε un nombre réel strictement positif. Déterminer le plus petit entier n_2 tel que, pour tout $n \ge n_2$, on a $w_n \in]2 - \varepsilon; 2 + \varepsilon[$.

2. En déduire $\lim_{n \to +\infty} w_n$.

23 Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = -5n^2$.

1. a. Déterminer le plus petit entier $n_{_{\scriptsize{0}}}$ tel que, pour tout $n \ge n_0$, on a $v_n \le -720$.

b. Déterminer le plus petit entier n_1 tel que, pour tout $n \ge n_1$, on a $v_n \le -3$ 125.

c. Soit A un nombre réel. Déterminer le plus petit entier n_2 tel que, pour tout $n \ge n_2$, on a $v_n \le A$.

2. En déduire $\lim v_n$.

Opérations sur les limites _

Chercher, calculer

Déterminer la limite des suites ci-dessous, définies pour tout entier naturel n non nul par les expressions suivantes.

1.
$$u_n = -n^2 - 3n + 5$$

2.
$$v_n = n^3 \left(2 + \frac{3}{n^2} \right)$$

3.
$$w_n = (3-5n)(n^3-4)$$

4.
$$x_n = \sqrt{n}(n^2 + 2n)$$

Raisonner, calculer

On considère la suite (u_n) , définie pour tout entier naturel n par $u_n = 3n^2 - 8n + 2$.

1. a. Sans transformer u_n , expliquer pourquoi le calcul de la limite de (u_n) donne une forme indéterminée.

b. Factoriser $3n^2 - 8n + 2$ par son terme de plus haut degré, c'est-à-dire $3n^2$. En déduire la limite de (u_n) .

2. En utilisant la même méthode, calculer les limites des suites (v_n) et (w_n) définies pour tout entier naturel

a.
$$v_n = -2n^2 + 4n - 5$$
;

b.
$$w_n = 5n^3 - 3n^2 - 7n + 9$$
;

c.
$$x_n^n = 10n^2 - 5n^4 + 7$$
.

On considère la suite (u_n) , définie pour tout entier natu- $\operatorname{rel} n \operatorname{par} u_n = \frac{2n-4}{n^2+1}.$

1. a. Sans transformer u_n , expliquer pourquoi le calcul de la limite de (u_n) donne une forme indéterminée.

b. En factorisant le numérateur et le dénominateur par leur terme de plus haut degré, montrer que, pour tout

entier naturel n non nul, on a u_n =

c. En déduire la limite de (u_n) .

2. En utilisant la même méthode, calculer les limites des suites (v_n) et (w_n) définies pour tout entier naturel

a.
$$v_n = \frac{2 - 5n}{4n + 7}$$

b.
$$w_n = \frac{-n^3 - 10n + 4}{2n^2 + 3n + 1}$$