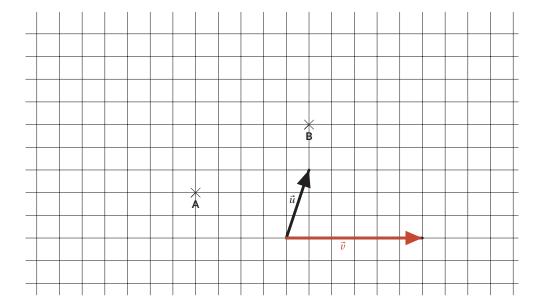

Fiche n 2

Somme de vecteurs _____

____ Exercice 1 🛊 🗕

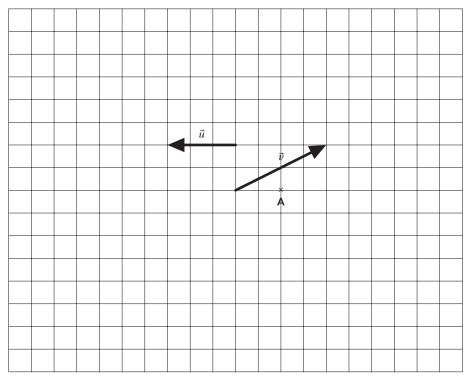
On considère les vecteurs ci-dessous :



- 1. Repérer les vecteurs égaux, les vecteurs opposés et les vecteurs de même norme.
- 2. Quelle est l'image du point F par la translation de vecteur \overrightarrow{LM} ?
- 3. Par quelles translations le point A est-il l'image du point B?

Exercice 2 🛊

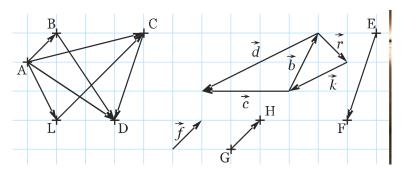
- 1. Construire le vecteur $\vec{w} = 2\vec{u} \vec{v}$ d'origine le point A.
- 2. Construire le vecteur $\vec{z} = \vec{u} 2\vec{v} \vec{w}$ d'origine le point B.



Construire les points E,F et G définis par :

$$\bullet \quad \vec{AE} = \vec{u} + 2\vec{v}$$

$$\bullet \quad \vec{AF} = -2\vec{u} + \frac{1}{2}\vec{v}$$


$$\bullet \quad \vec{AG} = \frac{1}{3}\vec{u} - 2\vec{v}$$

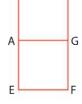
• Relation de Chasles _

On considère les vecteurs ci-dessous :

- 1. Écrire cinq sommes de vecteurs traduisant la relation de Chasles.
- 2. Transformer les expressions suivantes de façon à faire apparaître la relation de Chasles et à déterminer le vecteur somme.
 - (a) $\vec{BC} + \vec{EF}$
 - (b) $\vec{EF} + \vec{LC}$
 - (c) $\vec{GH} + \vec{BC}$
 - (d) $\vec{BC} + \vec{b}$

25 ADCG et AGFE sont deux carrés.

- **1. a.** Déterminer l'image du point D par la translation de vecteur DA suivie de la translation de vecteur AF.
- **b.** En déduire $\overrightarrow{DA} + \overrightarrow{AF}$.


$$\overrightarrow{a}$$
. \overrightarrow{DA} + \overrightarrow{AG}

b.
$$\overrightarrow{DA} + \overrightarrow{DG}$$

d.
$$\overrightarrow{EG} + \overrightarrow{DA}$$

$$\overrightarrow{\mathbf{f}}$$
. \overrightarrow{DE} + \overrightarrow{FC}

C

26 La figure est celle de l'exercice 25.

Recopier et compléter :

a.
$$\overrightarrow{H}$$
... = \overrightarrow{HE} + \overrightarrow{EL}

b.
$$\overrightarrow{A}... = \overrightarrow{AF} + \overrightarrow{KG}$$

c.
$$\overrightarrow{H}... = \overrightarrow{KG} + \overrightarrow{CE}$$

d.
$$\overrightarrow{F}$$
... = \overrightarrow{DC} + \overrightarrow{BH}

e.
$$\overrightarrow{A}... = \overrightarrow{HG} + \overrightarrow{LM}$$

f.
$$\overrightarrow{G}$$
... = \overrightarrow{GD} + \overrightarrow{BH}

Vecteurs et parallèlogramme _____

On peut traduire de plusieurs façons une même situation. Recopier et compléter ce tableau :

Égalité de vecteurs	Figure	Configuration
$\overrightarrow{AB} = \overrightarrow{DC}$	B C D	ABCD est un
		GHIJ est un parallélogramme
$\overrightarrow{AI} = \overrightarrow{IB}$		
		C est le symétrique de F par rapport à L

Exercice 7

ABCD est un parallélogramme de centre O.

- 1. Faire une figure à main levée.
- 2. Parmi les égalités suivantes, quelles sont celles dont on est sûr qu'elles sont vraies?

(A)
$$OA = OC$$

(B)
$$AB = CD$$

(C)
$$\overrightarrow{AB} = \overrightarrow{CD}$$

(D)
$$\overrightarrow{AD} = \overrightarrow{BC}$$

$$(E) [DO] = [BO]$$

$$(F) \overrightarrow{OD} = \overrightarrow{OB}$$

$$(G) OA = OB$$

(H)
$$(OA) = (OD)$$