Suites - Arithmétiques et géométriques

Exercice 1

- 1. Donner la relation entre u_{n+1} et u_n sachant qu'à chaque étape :
 - (a) on double;
 - (b) u_n augmente de 3,5;
 - (c) u_n augmente de 15%;
 - (d) u_n diminue de 50;
 - (e) u_n diminue de 3%;
 - (f) u_n diminue de 12,4%.
- 2. Dans chaque cas, indiquer s'il s'agit d'une suite arithmétique ou géométrique et donner la relation de récurrence.

Exercice 2 **?**

```
for i in range(n):
3
        u = u + 3
```

```
v = 600
   for i in range(n):
2
        v = 1.25*v
```

```
for i in range(n):
    w = i + 2*v
```

- 1. Indiquer le premier terme et la relation de récurrence de chacune de ces suites.
- 2. Si possible, donner la nature de la suite.

Exercice 3

Reconnaître parmi les suites suivantes celles qui sont arithmétiques, géométrique et préciser alors leur premier terme et leur raison.

- a) $u_n = -2 + 3n$. e) $u_n = 3n$.
- b) $u_n = \frac{1}{2}n$. f) $u_n = 2n 4$.
- c) $u_n = n + \frac{5}{2}$. g) $u_n = \frac{3n^2}{n}$.
- d) $u_n = \frac{3}{n}$.
- h) $u_n = 3n^2$.

Exercice 4 Forme explicite _____

1. Pour les suites arithmétiques suivantes, exprimer u_n en fonction de n puis calculer u_8 .

a)
$$u_0 = 5$$
 et $r = 3$

a)
$$u_0 = 5$$

et $r = 3$
b)
$$\begin{cases} u_0 = -2 \\ u_{n+1} = u_n + \frac{3}{2} \end{cases}$$
c) $u_0 = 3$
et $u_{n+1} = u_n + \frac{3}{2}$
et $u_{n+1} = u_n + \frac{3}{2}$
et $u_{n+1} = u_n + \frac{3}{2}$

b)
$$\begin{cases} u_0 = 5 \\ u_{n+1} = u_n - 1 \end{cases}$$
 (e)

(e)
$$\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + \frac{5}{2} \end{cases}$$

c)
$$u_0 = 3$$

et $r = \frac{1}{8}$

f)
$$u_1 = 1$$

et $r = 2$.

Exercice 5 Forme explicite _____

- 1. Pour les suites géométriques suivantes (premier terme et raison donnés), exprimer u_n en fonction de n puis calculer u_5 .
 - a) $u_0 = 3$ et q = 2.
- d) $\begin{cases} u_0 = 10 \\ u_{n+1} = \frac{1}{2}u_n \end{cases}$ e) $\begin{cases} u_1 = 2 \\ u_{n+1} = 3u_n \end{cases}$.
- b) $u_0 = -5$ et q = -1.
- c) $u_0 = -2$ et q = -3.